Search results for "Hyperkähler manifold"

showing 2 items of 2 documents

Observations on the Darboux coordinates for rigid special geometry

2006

We exploit some relations which exist when (rigid) special geometry is formulated in real symplectic special coordinates $P^I=(p^\Lambda,q_\Lambda), I=1,...,2n$. The central role of the real $2n\times 2n$ matrix $M(\Re \mathcal{F},\Im \mathcal{F})$, where $\mathcal{F} = \partial_\Lambda\partial_\Sigma F$ and $F$ is the holomorphic prepotential, is elucidated in the real formalism. The property $M\Omega M=\Omega$ with $\Omega$ being the invariant symplectic form is used to prove several identities in the Darboux formulation. In this setting the matrix $M$ coincides with the (negative of the) Hessian matrix $H(S)=\frac{\partial^2 S}{\partial P^I\partial P^J}$ of a certain hamiltonian real fun…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsPure mathematicsHolomorphic functionFOS: Physical sciencesKähler manifoldsymbols.namesakeHigh Energy Physics - Theory (hep-th)Real-valued functionsymbolsMathematics::Differential GeometryComplex manifoldInvariant (mathematics)Hamiltonian (quantum mechanics)Mathematics::Symplectic GeometryParticle Physics - TheoryHyperkähler manifoldSymplectic geometryJournal of High Energy Physics
researchProduct

Star calculus on Jacobi manifolds

2002

Abstract We study the Gerstenhaber bracket on differential forms induced by the two main examples of Jacobi manifolds: contact manifolds and l.c.s. manifolds. Moreover, we obtain explicit expressions of the generating operators and the derivations on the algebra of multivector fields. We define star operators for contact manifolds and l.c.s. manifolds and we study some of its properties.

Pure mathematicsDifferential formStar operatorMathematical analysisContact manifoldMathematics::Geometric TopologyGerstenhaber algebraConnected sumManifoldComputational Theory and MathematicsRicci-flat manifoldDifferential topologyGraded Poisson bracketsMathematics::Differential GeometryGeometry and TopologyLocally conformal symplectic manifoldLie algebroidMathematics::Symplectic GeometryHyperkähler manifoldAnalysisMathematicsSymplectic geometryPoisson algebraDifferential Geometry and its Applications
researchProduct